Assessment Schedule - 2007

Mathematics: Demonstrate an understanding of straightforward algebraic methods (90799)

Evidence Statement

	Criteria	Q. No	Evidence	Code	Judgement	Sufficiency
	Demonstrate an understanding of straightforward algebraic strategies.	1	Any combination where the coefficients MULTIPLY to 24 and the exponents ADD to 6.	A	Both correct to gain the grade.	ACHIEVEMENT: THREE A's
		2	t = -0.381n + c $83.243 = -0.381(7) + c$ $83.243 = -2.667 + c$ $c = 83.243 + 2.667$ $c = 85.91$ $t = -0.381n + 85.91$	A	OR equivalent. Accept t = 0.381n + 80.58 in view of the confusion over times "improving"	
ACHIEVEMENT		3	$-3(2x-4) = 40$ $-6x + 12 = 40$ $-6x = 28$ $x = \frac{-28}{6} = -4.\dot{6}$	A	showing correct working alone is sufficient	
		4	expanded $(x+8)^2 - 4 = x^2 + 16x + 60$ expanded $(x+7)(x+9) - 3 = x^2 + 16x + 60$ therefore they are equivalent. OR $((x+8)^2 - 4) - ((x+7)(x+9) - 3) = 0$ therefore they are equivalent. OR $\frac{(x+8)^2 - 4}{(x+7)(x+9) - 3} = 1$ therefore they are equivalent.	A	Or equivalent	

	Assessment Criteria	Q. No	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH MERIT	Demonstrate an understanding of a range of algebraic methods in solving problem(s).	6	let original number = x (x+2)(x+3) = 5550 $x^2 + 5x + 6 = 5550$ $x^2 + 5x - 5544 = 0$ $x \in \{-77,72\}$ x positive number x = 72 A = w(75 - w) or $A = -w^2 + 75w$	A M M	Must show appropriate equation (in any equivalent form) Rejection of negative solution (where shown) should be explicit. Or equivalent expression.	ACHIEVEMENT WITH MERIT: Achievement plus TWO M's OR THREE M's
ACH		7	$A = b^{2} - \frac{\pi(b - 0.5)^{2}}{4}$ $A = 0.2146b^{2} + 0.7854b$ $- 0.1963$ $A = 15.817 (3dp)$	A/M	Accept any rounding.	

Demonstrate an understanding of algebraic methods in investigating and solving complex problems. 8b $x = -1, y = 2$ 8c $\begin{cases} ax + (a+1)y = a + 2 \\ bx + (b-1)y = b - 2 \end{cases}$ 8b $x = -1, y = 2$ 8c $\begin{cases} ax + (a+1)y = a + 2 \\ bx + (b-1)y = b - 2 \end{cases}$ 8c $\begin{cases} abx + b(a+1)y = b(a+2) \\ abx + a(b-1)y = a(b-2) \end{cases}$ 8d $\begin{cases} abx + (ab+b)y = ab + 2b \\ abx + (ab-a)y = ab - 2b \end{cases}$ 8subtract 8c $\begin{cases} abx + (ab+b)y = ab + 2b \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} abx + (ab+b)y = ab + 2b \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ ax + (ab+b)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab-a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab+a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab+a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab+a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab+a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (ab+a)y = ab + 2b \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (a+1)y = a + 2 \end{cases}$ 8d $\begin{cases} ax + (a+1)y = a + 2 \\ abx + (a+1)y = a $		Assessment Criteria	Q. No	Evidence	Code	Judgement	Sufficiency
Demonstrate an understanding of algebraic methods in investigating and solving complex problems. 8b $x=-1, y=2$ 8c $\begin{cases} ax + (a+1)y = a+2 \\ bx + (b-1)y = b-2 \\ abx + b(a+1)y = b(a+2) \\ abx + (ab-1)y = ab + 2b \\ abx + (ab-a)y = ab - 2b \end{cases}$ Subtract $(ab+b)y - (ab-a)y = (ab+2b) - (ab-2b)$ $(ab+b-ab+a)y = ab+2b-ab+2b$ $(a+b)y = 2(a+b)$ $y=2$ substitute into first or second equation to get x $ax + 2(a+1) = a + 2$ $ax + 2a + 2 = a$ $ax = -a$ $x = -1$ Therefore the solution is independent of the values of a or b and always the same. $x=-1$		understanding	8a		М		EXCELLENCE:
The state of the solution is independent of the values of a or b and always the same. See interesting and solving and solving complex problems. See interesting and solving complex is a subtract in the problem of the problems. See interesting and solving complex is a subtract in the problem of the problems. See interesting and solving complex is a subtract in the problem of the problems. See interesting and solving complex is a subtract in the problem of the problems. See interesting and solving complex is a subtract in the problem of the problems. Mis (one of whis Q7 or Q8b).			8b	x = -1, y = 2			OR
Conjecture is true.	ACHIEVEMENT WITH EXCELLENCE	methods in investigating and solving complex	8c	$\begin{cases} abx + b(a+1)y = b(a+2) \\ abx + a(b-1)y = a(b-2) \end{cases}$ $\begin{cases} abx + (ab+b)y = ab+2b \\ abx + (ab-a)y = ab-2b \end{cases}$ $subtract$ $(ab+b)y - (ab-a)y = (ab+2b) - (ab-2b)$ $(ab+b-ab+a)y = ab+2b-ab+2b$ $(a+b)y = 2(a+b)$ $y = \frac{2(a+b)}{(a+b)}$ $y = 2$ $substitute into first or second equation to get x$ $ax + 2(a+1) = a+2$ $ax + 2a + 2 = a+2$ $ax + 2a = a$ $ax = -a$ $x = -1$ Therefore the solution is independent of the values of a or b and always the same. $x = -1$ $y = 2$		final sentence for	M's (one of which

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence		
Demonstrate an understanding of straightforward algebraic strategies.	Demonstrate an understanding of a range of algebraic methods in solving problem(s).	Demonstrate an understanding of algebraic methods in investigating and solving complex problem(s).		
3 × A	Achievement plus 2 x M or 3 × M	Merit plus 1 × E or 3 × A plus 3 × M (one of which is Q7 or Q8b)		

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.